THE RELATIONS ON SURFACES OF STRESS DISCONTINUITY IN THREE-DIMENSIONAL PERFECTLY RIGID-PLASTIC BODIES

PMM, Vol. 32, No. 3,1968, pp, 472-477

G.I. BYKOVTSEV, D.D. IVLEV and Iu. M. MIASNIANKIN
(Moscow - Voronezh)

(Received May 9, 1967)
Discontinuous solntions of the equations of the theory of perfect plasticity have often been applied in the solution of many problems of plane strain, plane stress, and torsion of prismatic bars. Examples of the use of discontinuous solutions in these cases are quite well known [1 to 3].

In [4] the conditions on a surface of stress discontinuity are investigated for a threedimensional body for states of stress corresponding to an edge of the Tresca prism. In [5] it is shown that for a convex yield surface the displacements are continnous and the plastic strain rates are zero at a surface of stress discontinuity. It should be noted that the wellknown conditions at surfaces where the stresses are discontinuous were obtained for statically deterninate problems.

In this paper relations are derived on surfaces of stress discontinoity for an arbitrary yield condition and the consequences of these relations are obtained for the Mises and Tresca yield conditions. The equilibrium of a regular four-sided pyramid is examined as an example.

1. In a perfectly plastic body let there exist some surface G on which the velocities u_{i}, the stresses $G_{i j}$ and the strain rates $\epsilon_{i j}$ in gen eral suffer some discontinuity. In what follows we shall consider a surface of discontinuity G in isotropic, rigid-plastic bodies. Moreover, we shall restrict ourselves to the case in which the material on both sides of G is in the plastic state. Then the stresses $\sigma_{i j}^{+}$and $\sigma_{i j}$ on the two sides of the surface of discontinuity mast satisfy the yield condition

$$
\begin{equation*}
f\left(\sigma_{i j}^{+}\right)=k, \quad f\left(\sigma_{i j}^{-}\right)=k \tag{1.1}
\end{equation*}
$$

From the conditions of equilibrium it follows that the traction vector on this surface must be continuous, i.e.,

$$
\begin{equation*}
\left[\sigma_{i j}\right] v_{j}=0, \quad\left[\sigma_{i}\right]=\sigma_{i j}^{-}-\sigma_{i j}+ \tag{1.2}
\end{equation*}
$$

where ν_{j} is the unit vector nomal to the surface of discontinuity. The strain rates in a rigid-plastic body are related to the stresses by the associated flow mle

$$
\begin{equation*}
\varepsilon_{i j}=1 / 2\left(u_{i, j}+u_{j, i}\right)=\lambda\left(\partial / / \partial s_{i j}\right)=\hat{\lambda} f_{i j} \tag{1.3}
\end{equation*}
$$

where λ is an undetermined factor greater than zero, and the comma denotes partial differentiation with rospect to the coordinate indicated. It follows from (1,3) that on the aurface of discontinuity the following relation holds

$$
\begin{equation*}
\left[\varepsilon_{i j}\right]=1 / 2\left(\left[u_{i, j}\right]+\left[u_{i, j}\right]\right)=\left[\lambda f_{i j}\right] \tag{1.4}
\end{equation*}
$$

It is known [7] that aurfaces of discontinuity of velocities in en incompressible material coincide with surfaces of maximam shear and can occur in an arbitrary state of atress lying
on the yield surface only for the Trenca yield condition. For other yield conditions surfaces of discontinuity of valocity are posaible only for quite definite combinations of the alemente of the strose deviator. The streas deviator must be continuons acrose a surface of velocity discontinuity. It follows from the continuity of the stress deviator and from Eqs. (1.1) and (1.2) that the atronsen are continuons at a surface of velocity discoum tinuity. Surfaces of discontinuity corresponding to a face of the Tresca yield surface constitute an exception. In this exceptional case, the direction cosines of the principal axes and also the maximum and minimum principal stresses are continnous across this surface, and only the intermediate principal stress can experience a diecontinuity.

In what follows we chall consider surfaces of stress discontinuity on which the velocitien are continuoun. From the continuity of velocition and the geometric conditions of compatibility it followe that the jumps in strain rate at a surface of stress discontinuity G can be represented in the form

$$
\begin{equation*}
\left[\varepsilon_{i j}\right]=1 / 2\left(a_{i} v_{j}+a_{j} v_{i}\right), \quad a_{i}=\left[u_{i, j}\right] v_{j} \tag{1.5}
\end{equation*}
$$

Choosing the canonical coordinate system $v_{1}=v_{2}=0, v_{3}=1$, we find from Eqs. (1.2) and (1.5) and from the condition of incompressibility that

$$
\begin{equation*}
\left[\varepsilon_{11}\right]=\left[\varepsilon_{29}\right]=\left[\varepsilon_{33}\right]=\left[\varepsilon_{12}\right]=0, \quad\left[\sigma_{18}\right]=\left[\sigma_{23}\right]=\left[\sigma_{33}\right]=0 \tag{1.6}
\end{equation*}
$$

It follows from (1.6) that

$$
\left[\sigma_{i j}\right]\left[e_{i j}\right]=0
$$

On the other hand,

$$
\begin{equation*}
\left[\sigma_{i j}\right]\left[e_{i j}\right]=\left(\sigma_{i j}^{-}-\sigma_{i j}^{+}\right) \varepsilon_{i j}^{-}+\left(\sigma_{i j}^{+}-\sigma_{i j}^{-}\right) \varepsilon_{i j}^{+} \geqslant 0 \tag{1.7}
\end{equation*}
$$

For convex yleld surfaces, the right-hand side of Eq. (1.7) goes to zero only for $\sigma_{i j}{ }^{-}=\sigma_{i i^{+}}$or for $\varepsilon_{i j}{ }^{-}=\varepsilon_{i j^{+}}=0$. Therefore, for convex yield surfaces the strain rates go to zero on a eurface of stress discontinuity.

The relation: (1.1) and (1.2) do not deternine all the limitations which must be imposed on the atate of atrose at the surface G. The associated flow rule (1.3) must be us ed to dem termine the remaining relations. Let us first examine the special case when $\sigma_{i j}{ }^{-}$and $\sigma_{i j}{ }^{+}$ lie on a plane part of the yield surface. In this case the right-hand side of Eq. (1.7) is identically zero and the strain rates can be discontinuous.

We have from Eqs. (1.4) and (1.5) that

$$
\begin{equation*}
1 / 3\left(a_{i} v_{j}+a_{j} v_{i}\right)=\left[\lambda t_{i j}\right] \tag{1.8}
\end{equation*}
$$

Equating the indices i and $/$ in (1.8), we obtain for incompressible bodies

$$
\begin{equation*}
a_{i} v_{i}=\left[\lambda f_{i i}\right]=0 \tag{1.9}
\end{equation*}
$$

Maltiplying Eq. (1.8) urrough by ν_{j} and taking (1.9) into account, we have

$$
\begin{equation*}
a_{i}=2\left[\lambda f_{i j}\right] v_{i} \tag{1.10}
\end{equation*}
$$

Eliminating the quantitien a_{i} from Eqs. (1.8) with the aid of (1.10) we have

$$
\begin{equation*}
\left[\lambda f_{i l}\right] v_{l} v_{j}+\left[\lambda f_{j l}\right] v_{l} v_{i}=\left[\lambda f_{i j}\right] \tag{1.11}
\end{equation*}
$$

Only three of the aix relations (1.11) are independent, since after contraction with the Kronecker tensor $\delta_{i j}$ and with ν_{i} these equations reduce to a single form. The three indem pendent relations of (1.11) togeiher with (1.1) and (1.2) form a complete system of equatione for the determination $\lambda^{-} / \lambda^{+}$and $\sigma_{i j}{ }^{-}$If $\sigma_{i j}^{+}$and the position of the surface are known. Here $\lambda^{-} / \lambda^{+}$muet be ponitive.

Let ns show that Eqs. (1.11) also hold at a aurface of atrens dis continuity on which the atraln rates $\epsilon_{i j}^{-}$and $\epsilon_{i j}{ }^{+}$go to zero. In this case, howevar, λ must be taken as some unknown quantity differing from the factor in the anmociated llow rule. The meaning of this quantity will be obvious in the courne of the exponition.

We remark that if $\epsilon_{i j}^{-}=\epsilon_{1 j}^{+}=0$ on the surface G, then it follows from the associated flow rule (1.3) that $\lambda^{+}=\lambda^{-}=0$, in which case the relations (1.8) and (1.11) become identities, and from (1.10), $a_{j}=0$. Therefore, the velocities and their first derivatives are continuous across a surface of stress discontinuity.

To determine the limitations which the associated flow rule imposes on the quantities $\sigma_{i j}{ }^{+}$and $\sigma_{i j}{ }^{-}$, the relations (1.8) in this case must be differentiated with respect to some direction x_{l} which is not tangent to the surface of discontinnity G. Here, since $\lambda^{+}=\lambda^{-}=\sigma$ on the surface, G, we have

$$
\begin{equation*}
\left[e_{i j, l}\right]=\left[\lambda_{, l} f_{i j}\right] \tag{1.12}
\end{equation*}
$$

The geometric conditions of compatibility of second order for the quantities u_{i}, which are continuous along with their first derivatives, have the form

$$
\begin{equation*}
\left[u_{i, j l}\right]=b_{i} v_{j} v_{l}, \quad b_{i}=\left[u_{i, m n}\right] v_{m} v_{n} \tag{1.13}
\end{equation*}
$$

Using Eqs. (1.13), we have from (1.12) that

$$
\begin{equation*}
b_{i} v_{l} v_{j}+b_{j} v_{l} v_{i}=2\left[\lambda_{l l} f_{i j}\right] \tag{1.14}
\end{equation*}
$$

By comparing Eqs. (1.8) and (1.14), it is easy to see that they agree if the quantities $b_{i} \nu_{l}$ and $\lambda_{i l}$ are replaced by a_{i} and $\lambda_{\text {, respectively. It follows from this that in the case }}$ under consideration relations analogons to (1.11) hold at the surface of discontinuity and that all the conclusions which follow from them are valid.

If the firat derivatives of the strain rates are also zero in a surface of stress discontinuity, then $\lambda_{l}=0$ and the relations (1.14) become identities. In this case, the associated flow rule should be differentiated twice, and by repeating all the argaments we again obtain that equations analogous to (1.11) hold on a surface of stress discontinuity. If the second derivatives of $\epsilon_{i j}$ vanish, then the differentiation should be carried out three times, etc.

It is not possible for all the derivatives of $\epsilon_{i j}$ to vanish, since then $\epsilon_{i j}=0$ in a region of plastic flow. Therefore, Eqs. (1.11) indeed consti tate additional limitations on the quantities $\sigma_{i j}$ - and $\sigma_{i j}{ }^{+}$for any nonconcave yield surface. We remark that the quantities λ^{-}and λ^{+}are positive in the vicinity of the surface of discontinuity. Therefore, the leading temn in the Taylor expansions of λ^{+}and λ - in x_{l} must be positive. It follows that the ratio $\lambda^{-} / \lambda^{+}$must have the sign of $(-1)^{n}$, where n is the number of differeatiations needed to obtain Eqs. (1.11).

In the canonical system of coordinates $\boldsymbol{v}_{1}=\boldsymbol{v}_{2} \Rightarrow 0, v_{3}=1$, the relations on the surface of discontinuity (1.1), (1.2), and (1.11) simplify and have the form

$$
\begin{equation*}
\left[\sigma_{i 3}\right]=0, \quad\left[f\left(\sigma_{i j}\right)\right]=0, \quad\left[\lambda i_{11}\right]=\left[\lambda f_{92}\right]=[\lambda / 12]-0 \tag{1.15}
\end{equation*}
$$

2. Let us examine the consequence of the relations (1.15) for the Mises yield condition

$$
f\left(\sigma_{i j}\right)=s_{i j} s_{i j}=k^{2}
$$

In this case the relations (1.15) assume the form

$$
\begin{equation*}
\left[\sigma_{i 3}\right]=0, \quad\left[s_{i j} s_{i j}\right]=0, \quad\left[\lambda s_{11}\right]=\left[\lambda s_{22}\right]=\left[\lambda s_{12}\right]=0 \tag{2.1}
\end{equation*}
$$

It follows from (2.1) that

$$
\begin{equation*}
\left\{1-\left(\lambda^{-} / \lambda^{+}\right)^{2}\right\}\left(s_{11}^{2}+s_{22^{2}}+s_{33^{2}}+2 s_{12^{2}}\right)=0 \tag{2.2}
\end{equation*}
$$

Eq. (2.2) will be satisfied if one of the following relations holds:

$$
s_{11}=s_{22}=s_{33}=s_{13}=0, \quad \lambda^{+}=\lambda^{-}, \lambda^{+}=-\lambda^{-}
$$

In the first two cases continuity of the stresses follows from (2.1). Thus, at a surface
of atreas discontinuity $\lambda^{+}=-\lambda^{-}$. Here we have from (2.1)

$$
\begin{gather*}
\sigma_{11^{-}}=2 \sigma_{33^{+}}-\sigma_{11^{+}}, \quad \sigma_{22}{ }^{-}=2 \sigma_{83}{ }^{+}-\sigma_{22}{ }^{+}, \quad \sigma_{33^{+}}=\sigma_{33^{+}} \\
\tau_{12^{-}}=-\tau_{12^{+}}, \quad \tau_{13}=\tau_{13^{+}}{ }^{+}, \quad \tau_{23}=\tau_{33^{+}} \tag{2.3}
\end{gather*}
$$

If i_{i}, m_{i}, n_{i} are the direction cosines of the principal axes of the stress tensor, then

$$
\begin{equation*}
\sigma_{i j}=\sigma_{1} l_{i} l_{j}+\sigma_{2} m_{i} m_{j}+\sigma_{3} n_{i} n_{j} \tag{2.4}
\end{equation*}
$$

Substituting (2.4) into (2.3) and taking account of the fact that

$$
\begin{equation*}
t_{i} t_{j}+m_{i} m_{j}+n_{i} n_{j}=\delta_{i j} \tag{2.5}
\end{equation*}
$$

we obtain a syatem of twelve equations for the determination of $\sigma_{1}^{-}, \sigma_{8}^{-}, \sigma_{3}^{-}, l_{i}^{-}, m_{i}^{-}, n_{i}$.
The solution of this system has the form

$$
\begin{array}{lll}
\sigma_{1}^{-}=2 \sigma_{33}-\sigma_{1}^{+}, & \sigma_{2}^{-}=2 \sigma_{33}-\sigma_{2}^{+}, & \sigma_{3}^{-}=2 J_{33}-\sigma_{3}^{+} \\
l_{1}^{-}= \pm l_{1}^{+}, & m_{1}^{-}= \pm m_{1}^{+}, & n_{1}^{-}=\mp n_{1}^{+} \\
l_{2}^{-}= \pm l_{2}^{+}, & m_{2}^{-}= \pm m_{2}^{+}, & n_{2}^{-}=\mp n_{2}^{+} \\
l_{3}^{-}=\mp l_{3}^{+}, & m_{3}^{-}=\mp m_{3}^{+}, & n_{3}^{-}= \pm n_{3}^{+} \tag{2.6}
\end{array}
$$

It follows from Eqs. (2.6) that the pairs of principal axes on the two sides of G having the sume notation, (i.e., l_{i}^{+}and l_{i}^{-}, etc.) make equal angles with the surface of discontinuity G and are coplanar with the nomal to this surface. The deviatoric components of the principal atresses have opposite signs. Therefore, the states of stress on opposite sides of the anface of discontinuity G correspond to diametrically opposite points on the yield locus in the deviatoric plane.
3. The analysis of the relations (1.15) is somewhat more complicated for the Tresca yield condition. Let the principal stresses numbered so that σ_{1} is intermediate between σ_{2} and σ_{3}. Then the yield condition has the form

$$
\begin{equation*}
\sigma_{2}-\sigma_{3}= \pm 2 k \tag{3.1}
\end{equation*}
$$

It follows from Eqs. (1.15), (2.4) and (2.5) that

$$
\begin{align*}
& {\left[\sigma_{33}\right]=\left[\sigma_{1} l_{3}^{2}+\sigma_{2} m_{3}^{2}+\sigma_{3} n_{3}^{2}\right]=0, \quad\left[\sigma_{13}\right]=\left[\sigma_{1} l_{1} l_{3}+\sigma_{2} m_{1} m_{3}+\sigma_{3} n_{1} n_{3}\right]=0} \\
& \left|\sigma_{23}\right|=\left[\sigma_{1} l_{2} l_{3}+\sigma_{2} m_{2} m_{3}+\sigma_{3} n_{2} n_{3}\right]=0 \tag{3.2}\\
& \left.\left.\mid \varepsilon_{11}\right]=\left[\lambda\left(m_{1}^{2}-n_{1}^{2}\right)\right]=0, \mid \varepsilon_{22}\right]=\left[\lambda\left(m_{2}{ }^{2}-n_{2}^{2}\right)\right]=0 \\
& \left.\mid \varepsilon_{12}\right]=\left[\lambda\left(m_{1} m_{2}-n_{1} n_{2}\right)\right]=0
\end{align*}
$$

The relations (3.1) to (3.3) are invariant with respect to a rotation of the coordinate system about the third axis. Let us perform such a rotation of coordinates so that $\sigma_{13}{ }^{+}$ goes to zero. Then it follows from (3.2) that $\sigma_{13}{ }^{-}=0$. Taking this into account, we obtain from (3.1) and (3.2) that

$$
\begin{equation*}
\frac{m_{3}{ }^{+} n_{3}{ }^{+}}{l_{1}^{+}}=\frac{m_{3}^{-}-n_{3}^{-}}{l_{1}^{-}} \tag{3.4}
\end{equation*}
$$

After elimination of $\lambda^{-} / \lambda^{+}$from Eqs, (3.3), these are satisfied if, and only if, the following equalities hold:

$$
\begin{equation*}
\frac{m_{1}^{-}-n_{1}^{-}}{m_{2}^{-}-n_{2}^{-}}=\frac{m_{1}^{*}-n_{1}^{+}}{m_{2}^{+}-n_{2}^{+}}, \quad \frac{m_{1}^{-}+n_{1}^{-}}{m_{2}^{-}+n_{2}^{-}}=\frac{m_{1}^{+}+n_{1}^{+}}{m_{2}^{+}+n_{2}^{-}} \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{m_{1}^{-}-n_{1}^{-}}{m_{2}^{-}-n_{3}^{-}}=\frac{m_{1}^{+}+n_{1}^{+}}{m_{2}^{+}+n_{2}^{+}}, \quad \frac{m_{1}^{-}+n_{1}^{-}}{m_{2}^{-}+n_{2}^{-}}=\frac{m_{1}^{+}-n_{1}^{-}}{m_{2}^{+}-n_{2}^{+}} \tag{3.6}
\end{equation*}
$$

Eqs. (3.4) and (3.5) will be satisfied if we set

$$
\begin{equation*}
l_{i}^{-}= \pm l_{i}^{+}, \quad m_{i}^{-}= \pm m_{i}^{+}, \quad n_{i}^{-}= \pm n_{i}^{+} \tag{3.7}
\end{equation*}
$$

and the system (3.2, 3.4,3.6) corresponds to the system (2.6).
We shall now show that there are no other solutions of the system of equations (3.1, $3.2,3.3$). In order to do this, we carry out a rotation of coordinates so that

$$
\begin{equation*}
\left[\varepsilon_{13}\right]=\left[\lambda\left(m_{1} m_{3}-n_{1} n_{3}\right)\right]=0 \tag{3.8}
\end{equation*}
$$

It follows now from the relations $(3.3,3.8)$ that Eqs.
or

$$
\begin{array}{ll}
\frac{m_{1}^{-}+n_{1}^{-}}{m_{3}^{-}+n_{3}^{-}}=\frac{m_{1}^{+}+n_{1}^{+}}{m_{3}^{+}+n_{3}^{+}}, & \frac{m_{1}^{-}-n_{1}^{-}}{m_{3}^{-}-n_{3}^{-}}=\frac{m_{1}^{+}-n_{1}^{+}}{m_{3}^{+}-n_{3}^{+}} \\
\frac{m_{1}^{-}-n_{1}^{-}}{m_{3}^{-}-n_{3}^{-}}=\frac{m_{1}^{+}+n_{1}^{+}}{m_{3}^{+}+n_{3}^{+}}, & \frac{m_{1}^{-}+n_{1}^{-}}{m_{3}^{-}+n_{3}^{-}}=\frac{m_{1}^{+}-n_{1}^{+}}{m_{3}^{+}-n_{3}^{+}} \tag{3.10}
\end{array}
$$

are satisfied.
Since (2.6) and (3.7) are solutions of the system (3.1), (3.3), they must be contained in combinations of the relations (3.3), (3.9), and (3.10). For this it is necessary that the following Eq. hold for the rotation of coordinates referred to above:

$$
\begin{equation*}
\left(m_{1} n_{3}-m_{3} n_{1}\right)\left(m_{1} m_{3}-n_{1} n_{3}\right)=0 \tag{3.11}
\end{equation*}
$$

We can verify that in satisfying the relation (3.11), the system of equations (3.1) to (3.3) has only the two solutions (2.6) and (3.7). The analysis of the solution (2.6) has been carried through above. The same conclusions follow from this solution for the Tresca yield condition as for the Mises yield condition. Therefore, we shall only give an analysis of the consequences of Eqs. (3.7).

Since in accordance with the solution (3.7), the direction cosines are continuous at the surface of discontinuity, the system can be transformedinto

$$
\begin{gather*}
{\left[\sigma_{1}\right] l_{3}^{2}+\left[\sigma_{2}\right] m_{3}^{2}+\left[\sigma_{3}\right] n_{3}^{2}=0} \\
{\left[\sigma_{1}\right] l_{1} l_{3}+\left[\sigma_{2}\right] m_{1} m_{3}+\left[\sigma_{3}\right] n_{1} n_{3}=0} \\
{\left[\sigma_{1}\right] l_{2} l_{3}+\left[\sigma_{2}\right] m_{2} m_{3}+\left[\sigma_{3}\right] n_{2} n_{3}=0}
\end{gather*}
$$

The system of equations (3.12) has a nontrivial solution if

$$
\begin{equation*}
l_{3} m_{3} n_{3}=0 \tag{3.13}
\end{equation*}
$$

That is, one or two of the principal axes lie in the plane tangent to the sarface of discontinuity. Analysis of the relations (3.1), (3.12), and (3.13) leads to the system of equations

$$
\begin{align*}
l_{3}=0, \quad m_{3} \neq 0, \quad n_{3} \neq 0, \quad\left[\sigma_{2}\right]=\left[\sigma_{3}\right]=0, \quad\left[\sigma_{1}\right] \neq 0 \tag{3.14}\\
l_{3} \neq 0, \quad m_{3}=0, \quad n_{3} \neq 0, \quad\left[\sigma_{1}\right]=\left[\sigma_{3}\right]=0, \quad\left[\sigma_{2}\right]= \pm 4 k \\
l_{3}=m_{3}=0, \quad n_{3}=1, \quad\left[\sigma_{3}\right]=\left[\sigma_{2}\right]=0, \quad\left[\sigma_{1}\right] \neq 0 \tag{3.10}\\
l_{3}=m_{3}=0, \quad n_{3}=1, \quad\left[\sigma_{3}\right]=0, \quad\left[\sigma_{2}\right]= \pm 4 k, \quad\left[\sigma_{1}\right] \neq 0 \tag{3.17}\\
m_{3}=n_{3}=0, \quad l_{3}=1, \quad\left[\sigma_{1}\right]=0, \quad\left[\sigma_{3}\right]=\left[\sigma_{3}\right] \neq 0 \\
m_{3}=n_{3}=0, \quad l_{3}=1, \quad\left[\sigma_{1}\right]=0, \quad\left[\sigma_{2}\right]=\left[\sigma_{3}\right] \pm 4 k \tag{3.1!}
\end{align*}
$$

Here Eqs. (3.15), (3.17), and (3.19) hold if the points representing the states of atrass on the two sides of the surface of stress diacontinuity are on opposite faces of the yield surface. The solutions (3.16) and (3.18) correspond to a single face of the yield surface.

We remark that on the faces of the Tresca surface a discontinuity in the plastic strain rates is possible when the direction cosines of the principal stresses are continuous; Eqs. (3.1) to (3.3) will then be satisfied.

The analyais of the posable surfaces of streas discontinuity for a state of atrese
corresponding to an edge of the Tresca prism has been carried out in detail in [4 to 6]. In this caae the relations of the theory of perfect plasticity are statistically determinate and Egs. (1.11) do not impose any limitations on the possible jumps of atress. The results of [4] are in accord with the relations (2.6).

In conclusion we show that the relations (2.6) will hold at a surface of discontinuity of stress for the case of an incompressible 'normal' isotropic body, i.e., one in which the yield condition is not altered by a change in sign of the atress deviator. In this case the relationa (1.5) can be written in the form

$$
\begin{gather*}
{\left[\sigma_{1} l_{i} t_{3}+\sigma_{2} m_{i} m_{3}+\sigma_{3} n_{i} n_{3} \mid=0, \quad\left[\mid\left(\left|\sigma_{1}-\sigma_{2}\right|,\left|\sigma_{2}-\sigma_{3}\right|,\left|\sigma_{3}-\sigma_{1}\right| \mid\right]=0\right.\right.} \\
{\left[\lambda\left(\frac{\partial f}{\partial J_{1}} l_{1}^{2}+\frac{\partial f}{\partial J_{2}} m_{1}^{2}+\frac{\partial i}{\partial \sigma_{3}} n_{1}^{2}\right)\right]=0} \tag{3.20}\\
{\left[\lambda\left(\frac{\partial l}{\partial J_{1}} l_{1} l_{2}+\frac{\partial l}{\partial J_{2}} m_{2} m_{2}+\frac{\partial l}{\partial J_{3}} n_{1} n_{3}\right)\right]=0} \\
{\left[\lambda\left(\frac{\partial l}{\partial J_{1}} l_{2}^{2}+\frac{\partial f}{\partial J_{2}} m_{2}^{2}+\frac{\partial l}{\partial \sigma_{3}} n_{2}^{2}\right)\right]=0}
\end{gather*}
$$

Wenote that $\sigma_{i}^{-}=-\sigma_{i}^{+}$, then

$$
\left(\partial / \partial \sigma_{i}\right)^{-}=-\left(\partial / / \partial J_{i}\right)^{+}
$$

and the relations (2.6) satisfy the system (3.20).
4. As an example, let as examine the equilibrium of a regular four-sided pyramid

Fig. 1

Fig. 2
(Fig. 1). We shall assume that a normal pressure p acts on the faces $B C O$ and $D O A$, and that the faces $A O B$ and $D O C$ are free of load. We take the planes $A O C$ and $D O B$ as the surfaces of discontinuity of atress and examine the two adjacent regions $O_{1} O C B$ and $A O O_{1} B$. We assume that there is aniform state of stress in each of these zones. In the region $A O O_{2} B$, let the quantity $\sigma_{3}=0$, and in the region $C O O_{1} B-\sigma_{3}=p$. We assume that the atate of stress in the pyramid satisfies the Tresca yield condition (3.1).

The cosines of the angles between the principal axes in the region $A O O_{2} B$ and the normal to the plane $O O_{1} B$ have the form

$$
\begin{equation*}
l=1 / \sqrt{2}, \quad m=1 / 2 \sqrt{2} \sin \gamma, \quad n=1 / 2 \sqrt{2} \cos \gamma \tag{4.1}
\end{equation*}
$$

where $2 y$ is the angle betwean the faces $A O B$ and $D O C$.
Using the relations (2.6, 3.1 and 4.1) we obtain the following expression for the limiting prenare:

$$
p=\sigma_{1}-2 k \sin ^{2} \gamma
$$

The maximam presuare will occur for $\sigma_{1}=-2 k$ and is

$$
p_{\max }=-2 k\left(1 \div \sin ^{2} \gamma\right)
$$

which agrees with the formula obtained in [4].
For the Mises yield condition the maximum limiting pressure p is

$$
p=-2 / 3 \sqrt{3} k \sqrt{\left(1+\sin ^{2} \gamma\right)^{2}+3}
$$

We now asame that the normal pressure acta only on the face $O B C$ and that the faces $A B O, D O C$, and $A O D$ are free of load (Fig. 2). We take the planes $A C O, D O B$, and EOF as the surfaces of atress discontinuity. Presuming as above that in all zones there is a uniform state of stress satisfying the Tresca yield condition, we obtain that on the surface of discontinuity EOF the direction cosines of the principal axes are consinuous. From the relations (2.6), (3.1), (3.17), and (4.1), we obtain the expression $p=-4 k \sin ^{2} \gamma$ for the limiting pressure.

BIBLIOGRAPHY

1. Sokolovskii, V.V., The Theory of Plasticity, Gostekhizdat, M. - L., 1950.
2. Hill, R., The Mathematical Theory of Plasticity, Oxford, 1950.
3. Kachanov, L.M., Fundamentale of the Theory of Pleaticity, Goatekhizdat, 1956.
4. Ivlev, D.D., Discontinuous eolutions of space problems in the theory of ideal plasticity, $P M M$, Vol. 22, No. 4, 1958.
5. Hill, H ., Discontinuity relations in mechanics of solids, Progresa in Solid Mechanics, Vol. 11 (pp. 247-276), 1961.
6. Ivlev, D.D., The Theory of Perfect Plasticity 'Nauka', 1966.
7. Bykovtsev, G.I., and Mianniankin, In. M., Slip aurfaces in three-dimensional rigidplastic bodies, Dokl. Aked. Nauk, SSSR, Vol. 167, No. 6, 1966.

Translated by A.R.R.

