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Discontinuous solutions of the equations of the theory of perfect plasticity have often been
applied in the solution of many problems of plane strain, plane stress, and torsion of pris-
matic bars. Examples of the use of discontinuous solutions in these cases are quite well
known (1 to 3.

In [4] the conditions on a sarface of stress discontinnity are investigated for a three-
dimensional body for states of stress corresponding to an edge of the Tresca prism. In [s]
it is shown that for a convex yield surface the displacements are continuous and the plastic
strain rates are zero at a surface of stress discontinuity. It should be noted that the well-
known conditions at surfaces where the stresses are discontinuous were obtained for
statically determinate problems.

In this paper relations are derivedon surfaces of stress discontinuity for an arbitrary
yield condition and the consequences of these relations are obtained for the Mises and
Tresca yield conditions, The equilibrium of a regular four-sided pyramid is examined as an
example.

1. In a perfectly plastic body let there exist some surface G on which the velocities

u;, the stresses g;; and the strain rates &; in general suffer some discontinuity. In what
follows we shall consider a surface of discontinuity G in isotropic, rigid-plastic bodies.
Moreover, we shall restrict ourselves to the case in which the material on both sides of G

is in the plastic state. Then the stresses a‘j"’ and a'fj"‘ on the two sidea of the surface of
discontinuity must satisfy the yield conditidn

o) =k, fe )=k (1.1
From the conditions of equilibrium it follows that the traction vector on this surface
must be continuous, i.e.,

[o1 v;=0, [o;1=0y"—o,;* (1.2)
where ; is the unit vector nomal to the surface of discontinuity. The strain rates in &
rigid-plastic body are related to the stresses by the associated flow mle

ey ="Ya(uy j+u; V=R(8]/35,)=hi, 1.3
where A is an undetermined factor greater than zero, and the comms denotes partial differ

entiation with respect to the coordinate indicated. It follows from (1.3) that on the surface of
discontinnity the following relation holds

legl="rle, ;] + [, ;D) =[] 1.4
It is known [7] that surfaces of discontinuity of velocities in an incompresasible material
coincide with surfaces of maximam shear and can occur in an arhitrary state of stress lying
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on the vield surfnce only for the Tresca yield condition. For other yield conditions

surfaces of discontinuity of velocity are possible only for quite definite combinations of

the elements of the stress deviator. The stress deviator must be continuous across a san
face of velocity discontinuity. It follows from the continuity of the stress deviator and

from Egs. (1.1) and (1,2) that the stresses are continnons at a surface of velocity disconw
tinuity. Surfaces of discontinnity corresponding to # face of the Tresca yield surface conati~
tute an exception. In this exceptional case, the direction cosines of the principal axes and
also the maximum sud minimum principal stresses are continnous across this surface, and
only the intermedinte principal stress can experience a discontinuity.

In what follows we shall consider surfaces of stress discontinunity on which the
velocities are continuous. From the continuity of velocities and the geometric conditions
of compatibility it follows that the jumps in strain mte at a surface of streas discontinuity
G can be represented in the form

le;l =" (a;+av), 8, =1, 51w (1.5)

Choosing the canonical coordinate system v, = vy = 0, v, = 1, we find from Eqs. (1.2)
and (1.5) and from the condition of incompressibility that
[ey] = l&gg] = [eg3] = [€1a] = 0, loys] = [o25] = [0ss] = O (1.6)
It follows from (1.6) that
[5;;1 [e;;1 =0
On the other hand,
fo;1 [g1= (6~ — 0,7 ) & -+ (057 — 5,7) &7 >0 a7

For convex yield surfaces, the right-hand side of Eq. {1.7) goes to zero only for
oy~ = 55t orfor g~ = g5+ = 0. Therefore, for convex yield surfaces the strain rates
g0 to zero on a surfece of stress discontinuity.

The relations (1.1) and {1.2) do not determine all the limitations which must be imposed
on the state of stress at the surface G. The associated flow rule (1.3) must be used to de«
termine the remaining relations. Let us first examine the special case when 0y and oru""'
lie on a plane part of the yield surface. In this case the right-hend side of Eq. (1.7) is
identically zero and the strain rates can be discontinvous,

We have from Egs. (1.4) and (1.5) that

Ya(aw; +av)=[Af;] {1.8)
Equating the indices { and f in (1.8), we obtain for incompressible bodies
av,=[M,]=0 {1.9)
Multiplying Eq. {1.8) through by vy and taking {1.9) into account, we have
a, =2 Ml (1.10)
Eliminating the quantities s, from Egs. (1.8) with the aid of {1.10) we have
M vy + Dl vy, &= [ (1.11)

Only three of the six relations (1.11) are independent, since after contraction with the
Kronecker tensor 3, and with y; these equations reduce to a single form. The three inde~
pendent relations of (1.11) together with (1.1) and (1.2) form a complete system of equa-
tions for the determination A™/AY and oy~ ifoy -+ and the position of the surface are known.
Here A~/At must be positive. !

Let us show that Egs. {1.11) also hold at a surface of stress discontinuity on which
the strain rates €;;~ and € + go to zero, In this case, however, A must be taken as some
unknown quantity differing from the factor in the associated flow role. The meaning of
this quantity will be obvious in the course of the exposition.
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We remark that if eij“ = € i“’ =0 on the surface G, then it follows from the associated
flow rule (1.3) that At =A— = 5, in which case the relations (1.8) and {1.11) become identi-
ties, and from {1.10), a; = 0. Therefore, the velocitiea and their first derivatives are continu-
ous across a surface of streas discontinuity.

To determine the limitations which the associated flow rule imposes on the quantities
o; + and 0" the relations (1.8) in this case must be differentiated with respect to some
direction x; which is not tangent to the surface of discontinuity G. Here, since At=A"=0
on the surface, G, we have

le;, d=1A 1l (1.12)

The geometric conditions of compatibility of second order for the quantities u;, which are
continuous along with their first derivatives, have the form

fu, ul =bvv, by={u, . 1v,.v, (1.13)
Using Eqgs. (1.13), we have from (1.12) that
byvyvi+ b =210, f] (1.14)

By comparing Egs. (1.8) and (1.14), it is easy to see that they agree if the quantities
b;v; and A,; are replaced by a; and A, respectively. It follows from this thatin the case
under consideration relations analogous to (1.11) hold at the surface of discontinuity and
that all the conclusions which follow from them are valid.

If the first derivatives of the strain rates are also zero in a surface of stress dis-
continuity, then )"I =0 and the relations (1.14) become identities. In this case, the associ-
ated flow rule should be differentiated twice, and by repeating all the arguments we again
obtain that equations analogous te (1.11) hold on a surface of stress discontinuity, If the
second derivatives of E‘-I- vanish, then the differentiation should be carried out three times,
ete.

It is not possible for all the derivatives of €;; to vanish, since then €; =0 in a region
of plastic flow. Therefore, Eqs. (1.11) indeed consti tute additional limitations on the
quantities o;,~ and 0; -+ for any nonconcave yield surface, We remark that the quantities
A~ and AT are positive in the vicinity of the surface of discontinuity, Therefore, the leading
term in the Taylor expansions of A* and A~ in x; must be positive. It follows that the ratio
A~/A* must have the sign of (~ 1), where n is the namber of differentiations needed to
obtain Egs. (1.11).

In the canonical system of coordinatesVi = vz =, 0, ¥3 = 1, the relations on the
surface of discontinuity (1.1), (1.2), and (1.11) simplify and have the fom

[5331 =0, [f(5;)1=0, [Afu]l=[Afoe] = [Aj1e] =0 (1.15)
2. Let us examine the consequence of the relations (1.15) for the Mises yield condi-
tion

Toy) =88 =1h

In this case the relations (1.15) assume the form

[Gia‘] =0, [sijsij] =0, [Asu] = [Asas] = [As12] =0 (2.1)
It follows from (2.1) that
{1 — (AT A (50 - s - sgs® + Zs1a?) =0 2.2)
Eq. (2.2) will be satisfied if one of the following relations holds:
S11 == Say == Sgg = §13 =0, A=A, At =— A~

In the first two cases continuity of the stresses follows from (2.1). Thas, at a surface
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of stress discontinuity A* = — A—, Here we have from {(2.1)

on” == 205" —on™, Gay~ = 2043" — Om¥, Gag™ == Ugg™

Ty == — Tt T =T, T = Tat (2.3)

If I;, m;, n; are the direction cosines of the principal axes of the stress tensor, then

S =0y by lj + oymmy + opnn; (2.4)
Substitating (2.4) into (2.3) and taking account of the fact that
Lt 4mm, Tnn——& (2.5)

we obtain a system of twelve equations for the determination of o,", G, 057, LT, miT, myT.
The solution of this system has the form

G817 = 2533 — GI+, Gy = 2533 — J"+ Gy~ —= 2)33 — o,;
h=41u% my” = - myt, m~=Fnt
[y” =4 lyt, my™ = 4= ma*, ny=F n,t

. - : (2.6)
Iy~ = F lg*, my” = mg*,  ng” = ngt

It follows from Egs. (2.6) that the pairs of principal axes on the two sides of G having
the same notation, (i.e., lifand 1;~, etc.) make equal angles with the surface of discontinuity
G and are coplanar with the normal to this surface. The deviatoric components of the prin-
cipal stresses have opposite signs. Therefore, the states of stress on opposite sides of
the sorface of discontinuity G correspond to diametrically opposite points on the yield
locus in the deviatoric plane.

3. The analysia of the relations (1.15) is somewhat more complicated for the Tresca
yield condition. Let the principal stresses numbered so that o, is intermediate between o,
and ¢5. Then the yield condition has the form

G, — Oy = 4 2k (3.1)
It follows from Egs. (1.15), (2.4) and (2.5) that

{og] = 0,12 4 aymy® - ogng®]l = 0, [oy,] == loylly + ogmymg + oynyny] = 0

log) = loylyly + oymymy - Gungny] = 0 {3.2)
len) = M — n% = 0, leg] = [A (my — mp) =

fero) = A (myme — nmymy)] = 0 (3.3

The relations (3.1} to {3.3) are invariant with respect to a rotation of the coordumte
system about the third axis. Let ua perform such a rotation of coordinates so that 013
goes to zero. Then it follows from (3.2) that o~ = 0. Taking this into account, we obtain
from (3.1) and (3.2) that

mytngt  mgTng” ‘
llf = [1- (5/&)

After elimination of A™/At from Eqs,(3.3), these are satisfied if, and only if, the
following equalities hold:

mT—mT oyt — gyt myT T myt -yt
T T = = - 5
" — #a I T [N T Mot o 1y " {3.5)
or - - ;
mT =T ot eyt T - nyT myt — ng”

(3.6)

ma — mat - ngt my” LonyT T mat — nyt
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Egs. (3.4) and (3.5) will be satisfied if we set
lm=l,  mo=dmd, onT = (3.7)
and the system (3.2, 3.4, 3.6) corresponds to the system (2.6).

We shall now show that there are no other solutions of the system of equations (3.1,
3.2, 3.3). In order to do this, we carry out a rotation of coordinates so that

le1a]l = [A (mymg — nyng)l = 0 (3.8)
It follows now from the relations (3.3, 3.8) that Eqs.
m” T omt ot myT— T omt— ot .
or mg~ - ng~  mgt -} ngt ! my — Ry~ mgt — ngt (3.9)
m-—m- mt 4t m- 4 omt—n" .
mg” —ny”  mgt A ngt My 4 ng | mgt — nyt (3.10)

are satisfied.

Since (2.6) and (3.7) are solutions of the system (3.1), (3.3), they must be contained
in combinations of the relations (3.3), (3.9), and (8.10). For this it is necessary that the
following Eq. hold for the rotation of coordinates referred to above:

(mng — mgny)(mymy — nyng) = 0 3.1
We can verify that in satisfying the relation (3.11), the system of equations (3.1) to
(3.3) has only the two solutions (2.6) and {3.7). The analysis of the solution (2.6) has been
carried through above, The same conclusions follow from this solution for the Tresca yield
condition as for the Mises yield condition. Therefore, we shall only give an analysis of
the consequences of Egs. (3.7).

Since in accordance with the solution (3.7), the direction cosines are continuous at
the surface of discontinuity, the system can be transformedinto

lo,)12 + [o3)mg® + log] n2 = 0
log) 111y + lo,] mymy + o] nyny = 0 (3.12)
[o4] L1y -+ [6,) mymy + [04] ngng = 0
The system of equations (3.12) has a nontrivial solntion if
Iymgny = 0 (3.13)

That is, one or two of the principal axes lie in the plane tangent to the surface of disconti-
nuity, Analysis of the relations (3.1), (3.12), and (3.13) leads to the system of equations

l3==0, mg=£0, n3=0, [G]=[0]-=0, [51]50 (3-14)
l35£0, mg=0, n30, [61]=[3]==0, [62]==+4%k (3.15
lg==mg =0, ng==1, [55]==[3] =0, [:]==0 (3.16)
lg==my =0, ny=1, [o] =0, [®:]=A4%k, [61]50 (3.17)
my=ny3=0, [I3=1, [61]=0, [s]=][0s]=0 (3.18)
my=n3=0, Ilx=1, [51] =0, [6a] = [03] £ 4% (3.19)

Here Eqgs. (3.15), (3.17), and (3.19) hold if the points representing the states of stress
on the two sides of the surface of stress discontinuity are on opposite faces of the yield
surface. The solutions (3.16) and (3.18) correspond to = aingle face of the yield surface.

We remark that on the faces of the Tresca surface a discontinuity in the plastic strain
rates is possible when the direction cosines of the principal stresses are continuous;

Egs. (3.1) to (3.3) will then be satisfied.
The analysis of the possible surfaces of stress discontinuity for a state of stress
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corresponding to an edge of the Tresca prism has been carried out in detail in (4106)l.1n
this case the relations of the theory of perfect plasticity are statistically determinate and
Egs. {1.11} do not impose any limitations on the possible jumps of stress. The results of
4& are in accord with the relations {2.6).

In conclusion we show that the relations (2.6) will hold at a surface of discontinuity
of stress for the case of an incompressible ‘normal’ isotropic body, i.e., one in which the
yield condition is not altered by a change in sign of the stress deviator, In this case the
relations (1.5) can be written in the form

[3,0;1; + symymy -= syning] = 0, [H{si— sl jos—3s), [ss— @ )] =0

gy

(

"\ d
{8l of of )
l(a Iyle 4 6 mm.-ra nlng” O

L

Wenote thato;~ =~ 0"."'. then
(6 . /aji)'_ mn — (6/ /635)4-
and the relations {(2.6) satisfy the system (3.20).

R af or .
Iy? -ty 033 m? - 653 nlz) == 0 ('{—‘)P

ot 8l
.—————Z) + (3' "1) ~;—d—s' _)]':::0

4. As an example, let us examine the equilibrinm of a regular four-sided pyramid

Fig. 1 Fig. 2

(Fig. 1). We shall assume that a normal pressure p acts on the faces BCO and DOA, and
that the faces AOB and DOC are free of load. We take the planes A0C and DOB as the
surfaces of discontinuity of stress and examine the two adjacent regions 0,0CB and
AOO,B, We assume that there is a uniform state of stress in each of these zones, In the
region A0O,B, let the quantity oy = 0, and in the region COO,B ~ o, = p. We assume that
the state of stress in the pyramid satisfies the Tresca yield condition (3.1).

The cosines of the angles between the principal axes in the region 400,B and the
normal to the plane 00,B have the form

{=1;V2 m=%% Visiny, n='%VZcosy (4.1)
where 2y is the angle between the faces 40B and DOC.

Using the relations (2.5, 3.1 and 4.1) we obtain the following expression for the

limiting pressare:
p=o0;— 2ksin®y

The maximum pressure will occur for o, = — 2k and is
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Prpax = — 2k {1 - sin* 1)

which agrees with the formula obtained in [4].
For the Mises yield condition the maximum limiting pressure p is

p=—"%V3kV{I+sin®r)?+3

We now assume that the normal pressure acts only on the face OBC and that the faces
ABO, DOC, and AOD are free of load (Fig. 2). We take the planes ACO, DOB, and EOF
as the surfaces of stress discontinnity. Presuming as above that in all zones there is a
uniform state of stress satisfying the Tresca yield condition, we obtain that on the surface
of discontinuity EOF the direction cosines of the principal axes are continuous. From the
relations {2.6), {3.1), {3.17), and (4.1), we obtain the expression p = — 4k sin *y for the
limiting pressure,
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