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Discoutinuous eolatiane of the equations of the theory of perfect plasticity hoe often bean 
applied in the soft&on af muxp probIems of plane strsin, pIsue stress, and torsion of pris- 
mstic bsrs. Examples of the use of discontinuous solutions in these csses are quite wtff 
known fr to 31. 

In [a] the conditions on a surface of stress discontinnity are investigated for a three- 
dimensional body for states of stress corresponding to an edge of the Tresca prism. In [s] 
it is shows that for 8 convex yi_eld surfsce the displacements are continuous and the plastic 
strsfs rates are zero at s surface of stress discontinuity, It should be noted that the well- 
known conditions at surfaces where the stresses are discontinuous were obtained for 
statically determinate problems. 

In this paper relations are derived on surfaces of stress discontinnity for ss arbitrary 
yield condition and the consequences of these relations are obtained for the Mists and 
Tresca yield conditions, The equiIibrinm of s regular four-sided pyramid is examined as an 
example. 

1. In a perfectly plastic body let there exist some surface G on which the velocftfw 
si, the stresses afi and the strain rates Gj in getteral suffer Borne diswntissity. In what 
follows WC sitall consider a surface of discontinuity G in isotropic, aid-plsetic bodies. 
Moreover, we shall restrict ourselves to the case in which the material on both aides of G 
is in the plastic state. Then the etreoses o! ,+ ssd a 
discontinuity must satisfy the yield conditik 

- on the two sfdes of tbs sttrface of 
$1 

fl.G*j')"k, I (a,-)=k 
(I.11 

From the conditions of equilibrium it follows that the trnctfon vector on this surface 
must be continuous, i.e., 

[a$ vj=o, [ui ,j = ati- - Gii+ (1.2) 

where vi is the unit vector normal to the surface of discontinuity. The strsin rates in a 
rigid-plastic body sre related to tke etresaes by the associated flow rule 

ei j = ‘is (=t, j + uj, J = h (Sj f ds,$ = sj,j (l.,?) 

where k ia an uudetermiuad factor greater than zero, and the comma demotes partial differ- 
sstiation with respect to the coordinate indicated. It follows from (1.3) that on the surface of 
discontinuity the follow@ relation holds 

Istjl = % (Isi jl + fui jlf = faf,jl fi.41 

It is known (71 that rorfacee of dfscbrrtinaity’of velocities is as inoompressible msterisl 
coincide with surfnces of maximnm shear and cau occur in an arbitrsry state of etreas lying 
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OD the yield rarf*ctr only fez the Treaen yield condftion. For other yield conditions 
surface of dimontfmity of velocity are pouibla only for quite definite combinationa of 
the elememta of the tiream deviator. The stress davfetor must be continuous acroa~ a (JU~C 
face of velocity diaaontfnufty. It follows fmm the cantianity of the stress deviator and 
from Eqn. (1.1) and (1.2) that the ~treaaw are aontinuoua at a mtrface of velocity discoam 
tinuity. Sarf6ca~ of df~~ntinufty corresponding to D faae of the Treaca yield earface cone& 
tute an exception. In this exceptional cue, the dhatian coainea of the principal axea and 
alno the maximum rod mfnimum principal mtreeaelr, are aontiaooua across this surface, and 
only the fntemsdiata principal 8tress can expsrl6nca a dfacontinuity. 

In what follows we ihall eondder surfacsrr of etreaa discontinuity on which the 
v6locitie~ are eontfnuous. From la continuity of velocitfee and the geometric conditions 
of compntibilfty it followr that the @tmprt in strain tnta at a surface of stress discontiuaity 
G cau be repreilantad fn the form 

[a&f = ‘/a faivj + &jvi>7 Qi = lUi, jl Vj 

il.% 

Choosiug the canonical coordinate systemvl = or = 0, vo = 1, we find from Eqa. (1.2) 
and (1.5) and from the, condition of incompreadbility that 

Iettl =: la**1 = b,] = Ielsl = 0, bY’1$J = [UPJ = [ass] = 0 (1.G) 
It follows from (1.61 that 

[oijl Ie{jl =O 

On the other hand, 

foijf faijJ= (brj--6Qij*)eij'-E_ ~~~*- aij-fsii*),# 

ff.71 

For c5w6x yfeld sarfacm, tks right-hand side of Eq. f l.Tf goes to xero only for 
usj- = eij+ or for efi- = Q+ = 3. Therefare, far convex yield surfaces the strain ratsa 
go to zero on a s&ace of stress discontinuity. 

The tslaticras (1.11 and (1.2) do not determine a11 the limitations which must be fmpored 
on the state of atrm~ at the surface G. The arsaciatcd fIow mle (1.3) must be ased to da- 
termine the remaining ralation6. Let us first exdaa the special case when b--’ and t7 + 
lie on a plane part of the yield aurface. In thia came tha right-hand aide of Eq?(1.7) ie 

0 

identically zero and tha @train mtsr, cut be diacontfnaoua. 
We have from Eqa. (1.4) and (I.51 that 

‘/a (a*vj + ojvJ =t &!,j 1 (1.31 

Equating the indfcer f and f in fl.8). we obtain for incompreaaible bodies 

niv* = [Ai,,] = 0 P.9) 

M~t~ply~~ Eq. Il.@ through by ~j and taking (1.8) into account, we have 

ui=2 [nf,j] ~~ (1.10) 

Eliminating tbo quantities of from Eqa. (1.8) with the aid of &lO) we have 

I’fill ‘ivj + l’fjll ‘lvi k [htfj] (2.11) 

Only thres of the mix mlrtiona (1.111 are independent, sinae after contraction with the 
Kronecker tent#or 8 and with vf these equations reduoe to a efngle form. The three indo- 
pendent relationa o (1.11) together with (1.1) and (X.2) form a complete ayotem of eqaa- Y 
tfon* for the dstermfnatfon A-/A+ aud u ff- if 0 .+ and tha position of the ourfaae are known. 

4 
Here A-/A+ muot be pt~itive. 

Let UE 6how that Eqs. fI.11) also hold st a surface of @r-s disuontfuuity oa which 
&a ettrrin rates c+- d Erf+g o to zero. In this case, however, A must be taken as some 
unknowu quautfty dfffsrfng frarn the faotor in the assedated flow mle. The meaniag of 
this quaatity wil be obvious fn the coursa of the exposition. 
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We remark that if Etr- 3 E + = 0 oa the surface C, then it follows from the associated 

fIow rule (1.3) *at x+=X-=dl I in which ease the relations (1.8) and (1.11) become identi- 
ties, and from &lo), a P 0. Therefore, the velocities and their first derivatives are continn- 
ous acmes a surface o stress discontinuity. f 

To determine the limitatidns which the associated flow mle imposes on the quantities 

+ 
*ii 

aud nij-, the relations (1.8) in this case must be differantiated with respect to some 

direction xf which is not tangent to the surface of discontinuity G. Here, since A+= k-=0 
on the surface, G, we have 

fEij, IJ = in, ,fijl (1.12) 

The geometric conditions of compatibility of second order for the quantities ui, which are 
continaoos along with their first derivatives, have the form 

[UC, $1 = $vjv{, b* = IUi* ,I VmVra (1.13) 

Using Eqs. (1.13), we have from (1.12) that 

bivlvi + bjvlvi = 2 [ & f,,] (1.14) 

By comparing Eqs. (1.8) and (1.14), it is easy to see that they agree if the quantities 
bivl and &I are replaced by ai and A, respectively. It follows from this that in tbe case 
under consideration relations analogous to (1.11) bold at the surface of discontinuity and 
that all tbe conclusions which follow from them are valid. 

If the firat derivatives of the strain rates are alao zero in a surface of stress dis- 
continuity, then A,f = 0 and the relations (1.14) become identities. In this case, the associ- 
ated flow rnle should be differentiated twice, and by repeating all the arguments we again 
obtain that equations analogous to (1.11) hold on a surface of stress discontinuity. If the 
second derivatives of 6.. vanish, then the differentiation should be carried out three times, 
etc. 

‘I 

It is not possible for aI1 the derivatives of i$f to vanish, &nce &en qi = 0 in a region 

of plastic flow. Therefore, Eqe. (1.11) indeed consti tats additional limitations on the 
quantities ~ii- and ~ii + for any nonconcave yield surface. We remark that the quantities 
A- and A+ are positive in the vicinity of the surface of discontinuity. Therefore, the leading 

term in the Taylor expansions of A+ and A- in xl must be positive. It follows that the ratio 
A-/A+mnst have the sign of (- I)“, where n is the namber of differentiations needed to 

obtain Eqs. (1.11). 
In the canonical system of coordiiates:Vx = Va =, 0, Vs = 1 , the relations on the 

surface of discontinuity (l.l), (1.2). and (1.11) aimplify and have the form 

Pial = 0, 11 @<$I = 0, [hllll = [J.J+92] = [hjl$] = 0 (1.15) 

2. Let ne examine the consequence of the mlations (1.15) for the Mises yield condi- 
tion 

j (Q) = SijSij = k” 

In this case the relations (1.15) ausnme the form 

Pi31 = 0, [SijSij] -- 0, [a%] = [hS?g] = [hQe] =O 

It follows from (2.1) that 

(2.1) 

( 1 - (h- I A’)%} (sn” + s,f + sss” + ‘2Q.g) z.z 0 (1’2) 

Eq. (2.2) will be satisfied if one of the following relations holds: 

.S,l = s.2 = RQS = s,3 = 0, A+=?“-, kf=- h- 

In the first two cases contin~~ity of the stresses folIowe from (2.1). Thus, at a surface 
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of *tress discontinuity A+= - A-. Here we have from (2.1) 

If ff, ml, nf are the direction cosines of the principal axes of the atress tensor, then 

oij = o1 l1 lj + 6 2 t 1 m.m + G3ninj (2.4) 

Substituting (2.4) into (2.31 and taking account of the fact that 

Ii ij + mimj + nini = 6ij 
(2.5) 

we obtain a nyetem of twelve equations for the dete~ination of cl-, us-, o,-, Zi-, q-, n+-. 

The aolution of thiet system has the form 

CS,- = L’S= - o,+, Q-” z.zz t)333- @+, I&- --_ fSS3 - s3” 

II- == f tl+, 
15- -= + i,+, 

ml- = f ml+, nl- = 3 sl+ 

ma- = rf n+, n3- = f n2+ 

I:,_ = 7 Ia+, rn3- = 7 mS+, n3- = * na+ 
(L’.G) 

It followa from Eqa. (2.6) that the pairs of principal axea on the two aides of C having 
the 8ame notation, (i.e., lt%md li-, etc.) make equal angles with the surface of discontinuity 

C and are coplanar with the aonual to this surface. The deviatoric components of the prin- 
cipal streseeo have opposite signs. Therefore, the states of stress on opposite sides of 
the rorface of ~ewn~nnity G correspond to diametrically opposite points on the yield 
locus in the deviatorfc plane. 

3. The analysis of the relations (1.15) is somewhat more complicated for the Tresca 
yield condition. Let the principal stresses numbered so that oI ,ie intermediate between oS 
end us. Then the yield condition has the form 

cr2 - a, = f 2k (3.1) 

It follows from Eqs. (1.1.9, (2.4) and (2.5) that 

[a,,] = [a,&2 r- ugn:;J -:- qp3”l] = 0, [a,:,] = [a,l,Z, + a,m,m, + a,n,n,,] = 0 

{n,:,l = Ia,l,l,, -t cr2m2m3 -i- u~,n2?1:,] =- u (3.2) 

[eJ -= [h(ta;Z - n,?)j = 0, I&J -7 [A (nzr2 - nzS)] = 0 

lu,J = (h (nzp~ - npr)l =7 0 (S.3 

The relations (3.1) to (3.3) are invariant with respect to a rotation of the coordinate 
system aboat the thfrd axis. Let us perform aach a rotation of coordinates so that (I*~+ 
goes to zem. Then it foIIows from (3.2) that a,$ - = 0. Taking this into account, we obtain 
from (3.1) and (3.2) that 

mlsn3+ mg-ttg- 
- == 

[1* 11- 
(3. ‘t) 

After elimination of A-/x+ from Eqs, (3.31, these are satisfied if, and only if, the 
following equalities hold: 

/a,- - I, 1 -- m, :- - tt,+ -_ ~_-__-_-_ mj- + n,- ml+ 1. II* L 
m-- - It2 mq+ - tl$* * 

= 
I%~-- + a- my+ + Il., * 
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Eqa. (3.4) and (3.5) will be satisfied if we set 

ti- = f t,+, mi- = f m.+ - t ’ ni- = + n.+ -- 1 (3.7) 

and the system (3.2, 3.4, 3.6) corresponds to the system (2.6). 
We shall now show that there are no other solutions of the system of equations (3.1, 

3.2, 3.3). In order to do this, we carry out a rotation of coordinates so that 

I&131 = ia (mm3 - n&l = 0 (3.8) 

It follows now from the relations (3.3, 3.8) that Eqe. 

or 

ml- -i- nr- _ ml+ + nl+ 
rn3 -t n3- ~- ms+ + n3+ ’ 

ml- - nl- ml+ - II~+ --z 
ma- - n3- m3+ - ng+ 

ml- - nl- = ml+ + nl+ ml- + nl- ml+ - n,’ 
m3- - nB- mgt -j- n3+ ’ 

ZZ 
w3- + n3- rn3?- nB+ 

(3.9) 

(3.10) 

are satisfied. 
. 

Since (2.6) and (3.7) are solutions of the system (3.1), (3.3), they must be contained 
in combinations of the relations (3.3), (3.9). and (3.10). For this it is necessary that the 
following Eq. hold for the rotation of coordinates referred to above: 

(InIn - m3n~)(m1m3 - n1n3) = 0 (3.11) 

We can verify that in satisfying the relation (3.11), the system of equations (3.1) to 
(3.3) has only the two solutions (2.6) and (3.7). The analysis of the solution (2.6) has been 
carried through above. The same conclusions follow from this solution for the Tresci yield 
condition as for the Mises yield condition. Therefore, we shall only give an analysis of 
the consequences of Eqs. (3.7). 

Since in accordance with the solution (3.7), the direction cosines are continuous at 
the surface of discontinuity, the system can be transformedinto 

Ia,lt,’ + [u*ln733 + Ia,] n33 = 0 

IO,] 1,Z3 + ]uq] m1m3 + [a,] n1n3 = 0 (3.1’) 

Ial] 1,1o -t ]uz] m2m3 + [aa] n2n3 = 0 

The system of equations (3.12) has a nontrivial solution if 

Z,m3n3 = 0 (3.13) 

That is, one or two of the principal axes lie in the plane tangent to the surface of disconti- 
nuity. Analysis of the relations (3.1), (3.12). and (3.13) leads to the system of equations 

I3 = 0, *=iJ=o, IL3 # 0, [oe] = [53] -= 0, [51] # 0 (X Irt) 

13 # 0, %=O, n3#0, [Q] == 1531 =o, [52] ~-= + ik (3. I.3 

13 == 1?13 = 0, n3- 1, [s:,] -= [a] -= 0, ]&I i 0 (:;. II:) 

13 = m3 = 0, II:+ : 1, I%1 = 0, [5?] = -& ?k, IQ1 # 0 (3. Ii) 
Ix:, = n3 = 0, 13=1, 1511= 0, IGal = la31 # 0 (2. IS) 

mg = n3 = 0, t3= 1, [Gl] .-= 0, [G] = 1631 + Gk (3. III) 

Here Eqa. (3.15). (3.17). and (3.19) hold if the points representing the states of stress 
on the two aides of the surface of atrosa discontinuity are on opposite faces of the yield 
surface. The aolutiana (3.16) and (3.18) correspond to a aingle face of the yield surface. 

We remark that on the faces of the Tresca surface a discontinuity in the plastic strain 
rates is possible when the direction cosines of the principal stresses are continuoaa; 
Eqa. (3.1) to (3.3) will then be aatfafied. 

The analyda of the poaaible mufaces of atremm discontinuity for a state of atreas 
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corresponding to an edge of the Tresca prism has been carried out in detail in [4 to 61. In 
this cane the relations of the theory of perfect plasticity are statistic~ly determinate and 
E s. (1.11) do not impose any limitations on the possible jumps of stress. The results of 
t47 i are IL accord with the relations (2.6). 

In conclssion we show that the relations (2.6) will hold at a surface of discontinuity 
of stress for the case of un incompressible ‘normal’ isotropic body, i.e., one in which the 
yield condition is not altered by a change in aig of the stress deviator. In this case the 
relations (1.5) can be written in the form 

Wenote that ul- - - al+, then 

(a’/ar;,)-=-z - (a/ /asi)+ 

and the relations (2.6) satisfy the system (3.20). 

4. As an example, let us examine the eqailibriam of a regular four-sided pyramid 

Fig. 1 Fig. 2 

(Fig. 1). We shall asomne that a normal pressure p acts on the faces BCO and DOA, and 
that the faces AOB and DOC are free of load. We tahe the planes AOC and DOB as the 
snrfacea of discondnnity of stress and exsmfne the two adjacent regions 0,OCB and 
AOOJ#. We assume that there is a n&form state of stress in each of these zones. In the 
region AOO,B, let the quantity v, = 0, and in the region COOtB - v, = p. We assume that 
the state of stress in the pyramid natiafies the Tresca yield condition (3.1). 

The cosinea of the angles between the prindpal axes in the region AOO,B and the 
normal to the plane 00,B have the fom 

1=1/p!, m = ‘/? $4 sitI r, n = lj2 1/Z cos y (4.4) 

where v is the angle between the faces AOB and DOC. 
Udng the relations (2.6, 3.1 and 4.1) we obtain the following expression for the 

limiting pressare: 
p = 61 - Yi sin? y 

The maxfmam pressurs will occur for P, P - 2k and is 



which agrees with the formula obtained in f4]. 
For the Mirras yield condition the maximum limiting pressure p is 

p = - ?/s 1/3 h- v(l + sin” r): f 3 

We now smrme that the normal premmars ectm only oa tha face OBC and that the faces 
MO, DOC, and AOD are free of load (Pig. 2). Ws take the planes ACO, DOB, and EOF 
as the surfaces of strsrra discontinuity. Presuming aa above that in a11 zones there is a 

uniform etate of etrcm satisfying the Tresca yield condition, we obtain that on the surface 
of discontinuity EOF the dfrection cosines of the principal axes are continuoas. From the 
relations f2.6), (3.1). (3.171, and fb.l), we obtain the expreedon p = - 4& sin “y for the 
limiting pressure. 
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